How to approach a Crackme

Alright, I intend this tutorial to go over the basics of what you should do when approaching a crackit. It will not go into detail on any crackit from www.bright-shadows.net in specific, and if you’re looking for answers, keep looking. It assumes that the reader has some basic knowledge of programming (very basic) and I will touch on assembly. Now that’s out of the way, lets’ dive in shall we?

To properly understand what it is to “crack” I think I should give a general overview of what cracking is. In general, when you are looking to crack a program, what you are in essence trying to do is find out what kind of protection the program is using, and to override that protection. Now depending on the level of the protection, going about the removal of the protection can involve an infinite number of possibilities. Obviously I cannot go over how every program is protected, one because I don’t know, and another because I just can’t, I would rather talk about the general strategies that I and others use when approaching a protection scheme.

You should always run a program first, simply because it gives you an idea of what you should be looking for. If the program returns the string “I’m sorry, but your solution is incorrect.” every time that you input a wrong answer, then you have something to look for once you start debugging the program. From that point it usually helps to find the section in the crackit that you just saw. This is usually referred to as the "bad boy message". Now, in some programs, you are going to see both a bad and good boy message. One such good boy message may read “Congratulations! The password is: Blacklotis”. Obviously if all crackits were this simple I wouldn’t be writing to you right now, so lets take it up one more notch and say that the password not in the text itself, but rather, what the user types into the program, is compared with something in memory, and if the two are equal, it displays the message.

Patching: Patching at its simplest form, is changing code in any existing program to make it do something it was not intended to do originally. Now you may be asking yourself, why would I want to change a program’s code? Well here is a good example; lets say that you are looking at this bit of code:

mov eax, 123

mov ebx, *user input*

cmp eax, ebx

je *congrats text with password*

Now if you input anything besides the number 123(h) or 291(d) normally the program would compare the two values, and only if you supply the correct password would it redirect you to the congratulations message, which also has the password. Now let us go in and patch that jump:

mov eax, 123

mov ebx, *user input*

cmp eax, ebx

jmp *congrats text with password*

This time, when the code is executed, it will ALWAYS jump to the congratulations box, meaning that you no longer need a good password to make the program output what you want.

Understanding the code: Patching, while a very nice tool, cannot unfortunately solve all of your problems when faced with a protection scheme. To support this, I give you a scenario: let us say that a program has the MD5 hashing algorithm inside of it. The program will take your input, hash the input, and compare it with a hash stored in memory, at that time, if the hashes are identical, it will return your original string as the password. I’m sure you can see the holes that patching will cause. In this case, no matter what string you input, it will always tell you “Congratulations! The password is <user input>”. While this is nice to look at, it really gets you no further along at finding out which password was stored in memory to begin with. To do so you have to understand both what the program is doing to your string, and how it comes about with a response. At this point, there are a few options that you have to go about solving the crackit. You could either “brute-force” the crackit, try every possible combination of characters until you reach the correct one (this will be discussed later in the article), or “reversing” the encryption used in the program hoping to find some weakness in the algorithm used. Obviously if you are dealing with MD5 you are highly unlikely to run across a weakness, but the concept still stands.

Reversing: Reversing in of itself is such a broad topic that it could fill many volumes on its own, I personally own a few books on the subject, so I will try to whittle it down to the bare essentials as I explain. Reversing at its purest is going through a set of instructions (code) to figure out what it was originally intended to do. With higher level languages such as C, C++, and Java, this process becomes much easier as you can follow the code somewhat logically and determine what its intended usage is. Looking at the following segment of code see if you can determine what is going on:

int count = 1;

int increment = 2;

count = count + increment;

return count;

Even if you had never before seen any code resembling this, without much effort you could probably figure out that when count is returned it has a value of 3. The code looks almost like English and you cam almost “read” your way through it. The following is roughly the same code, but instead written in ASM (Assembly code)

Mov eax, 1

mov ebx, 2

add eax, ebx

retn

When you are debugging a program, you often times do not have access to the higher level code that the program was written in, you are instead forced to look at the ASM which is used by your operating system and generated through a compiler. ASM code can sometimes be more difficult to sort though and read, especially in real world instances.

Brute-Force: Brute-Forcing, as I previously mentioned, is trying every possible combination of a password, until the desired result is reached. A small aside before I continue. Brute-forcing almost anything not specifically designed for that purpose to begin with is most likely illegal. I am not endorsing nor do I take responsibility for anything done with ideas/knowledge gained by this text. When in the context of protection schemes, at times the only way to break through a protection is by means of brute-force. In an earlier example I mentioned a crackit having the MD5 hashing algorithm used for password checking purposes. If that were the case, providing there were no other vulnerabilities in the program, brute forcing would be a serious option. I feel the best way to describe brute-forcing is to use a live example, so I will be providing a brute-force loop. Since this is a cracking tutorial I will be using x86 ASM as the general syntax for the loop, as I explain the steps that it goes through. This also ties in with my section on reversing, and takes things a step further:

01
mov esi, <input_location> ;address of input

1a
mov eax, <input_Length> ;load eax with input length

02
<jump_Location>

;I use nop

03
inc byte ptr[esi] ;increment the first byte

04
cmp byte ptr[esi],7Bh ;compare with 7B or 'z'

05
jne <algorithm-entry> ;go check it

06
mov byte ptr[esi],20h ;set first character to ' '

07
inc esi ;point esi to second byte of input

08
cmp byte ptr[esi],0 ;if previous input_Length is exceeded

09
jne <jump_Location> ;go increment it

9a
mov eax, <input_length> ;resave <input_length>

10
mov byte ptr[esi],20h ;set it to ' '

11
jmp <jump_Location>

The code is already heavily commented, but I will help clarify a few areas I find to be somewhat confusing for someone reading this for the first time. All of the wordings that I placed in < > are variables, which are totally unique in each instance of use. This loop is also endless, unless one of two situations stops it, the program finds a correct solution, or your computer runs out of memory. Now, in order for this to work properly, it would need to be placed in between the encryption algorithm input, and the call to the bad message. For instance, the password I want is 123, but the password provided is 321. Normally, the program would kick me to my bad boy message, but instead, I patch the program to instead flow into my brute force loop, which increments my original input, and will return the modified input back to the start of the encryption, until one of the loops conditions are met.

Key-Generation: Key generators are another method that you can choose to approach a program by. They are similar to brute forcing in that they use the program’s algorithm against itself. They are not however, a brute forcing method. Key Generators simply re-create the algorithm of any program, and use it to construct keys, based off of user input. As is the case in most situations, there are multiple ways to approach this. You could reverse the algorithm, and recode it in a higher level programming language, which is often used if at all possible. Or, if the algorithm is either incredibly complex, long, or you don’t have the capabilities to reverse it; you can use inline Assembly programming to recreate the algorithm. Personally I feel that reversing the algorithm is much better for the beginner, because it will give you a better feel for the flow of the program you are trying to get access to, as well as get you more familiar with ASM if you are not already. In general, key-generating takes the algorithm used to derive a key, and encrypts any user input, providing the output of the algorithm. Which is very useful with programs that make don’t have the actual algorithm used to derive the key, but a checking algorithm for the information supplied.

Tools: Throughout this article you may have been thinking, well this is all well and good, but how do I look at a program the way he is? I have never seen anything like that! Well that’s what I am now going to briefly cover. When you are reviewing a programs code, it is almost always done with a debugger and or dissembler. Basically, I’m not going into great detail here, a debugger or dissembler will go through your program and show you the code generated by the compiler at the time of the program’s creation. The main difference is that debuggers will let you “step through”, move line by line, through a program. This can become very useful when you want to examine a certain portion of the program. Another HUGE aspect of debuggers is that they let you set “breakpoints” on almost any line of code, so that when the program goes to execute that line, the debugger stops and lets you examine the exact state of the program at the time of the line’s execution. Dissemblers on the other hand, provide a readable version of the program’s ASM code, while not letting you debug the program in real time. Both have their uses and I will be listing some good materials at the end of this article.

List of utilities:

DEBUGGERS:

· Olly Debugger (free and VERY good for 32 bit PE files)

· Debug (comes with windows)
· Turbo debugger (good for DOS applications)
· IDA Pro (the best if you can afford it)
DISEMBLERS:

· Win32DASM

Tutorials (Assembly):

http://www.planetpdf.com/codecuts/pdfs/aoa.pdf That is the link for the Art of Assembler, The absolute best reference for ASM I have ever read!

And most importantly:

A BRAIN!

Well that’s about it for now, I have gone over the basics of how you should/could approach a lot of basic program protections. I hope you both enjoyed the read and learned something from it. If you did benefit from this tutorial or you feel that some corrections need to be made, please do not hesitate to email me with your thoughts/comments at Blacklotis@gmail.com. If all goes well and I get some feedback from this, I will go into more depth on each subject and release more to this series. Credit is due to those who read through this as it was being written and helping with some minor grammar wording mistakes. SO thanks go out to Paul and Daan for the help.

